Convert dekahertz [daHz] to Electron Compton wavelength Online | Free frequency-wavelength Converter

Switch units
   

Frequencies in the Tens of Hertz


The dekahertz (daHz) is a unit of frequency equal to 10 hertz (10¹ Hz), meaning there are 10 cycles per second. This frequency range is significant in many fields, including acoustics, electronics, and communications, where oscillations occur in the lower audio and signal processing bands.


In acoustics, frequencies around dekahertz values fall within the lower range of human hearing, which spans roughly from 20 Hz to 20,000 Hz. Sounds at 10 Hz, though below typical hearing thresholds, can be felt as vibrations, especially in certain environments like heavy machinery or seismic activity.


In electronics and signal processing, dekahertz frequencies are important for analyzing signals such as low-frequency radio transmissions, audio signals, and mechanical vibrations. These frequencies are relevant for technologies like sonar, medical ultrasound imaging, and certain communication systems.


In addition, dekahertz frequencies play a role in studying natural phenomena, such as seismic waves and biological rhythms, where oscillations occur on the order of tenths of a second.


Understanding and utilizing dekahertz frequencies enables engineers and scientists to design devices and systems that interact with signals in the low-frequency audio and vibration ranges, bridging the gap between infrasonic and audible frequencies.




A Quantum Limit of the Electron


The electron Compton wavelength is a fundamental constant in quantum physics that represents the limit at which the wave-like nature of an electron becomes significant in high-energy interactions. It is defined by the equation λ = h / (mₑ c), where h is Planck’s constant, mₑ is the mass of the electron, and c is the speed of light. The value of the electron Compton wavelength is approximately 2.426 × 10⁻¹² meters (or 2.426 picometers). This is significantly larger than the Compton wavelengths of heavier particles like the proton or neutron, reflecting the electron's much smaller mass.


The Compton wavelength is important because it sets a quantum limit on how precisely a particle's position can be defined without introducing enough energy to create particle-antiparticle pairs (like an electron and a positron). It plays a key role in quantum electrodynamics (QED), high-energy physics, and particle interactions involving photons and electrons. For instance, Compton scattering, a process where X-rays scatter off electrons, directly involves this wavelength. Understanding the electron’s Compton wavelength helps physicists analyze the structure of matter, radiation–matter interactions, and the behavior of particles at quantum scales.



No conversions available for frequency-wavelength.

Convert dekahertz [daHz] to Other Frequency-wavelength Units