Convert Electron Compton wavelength to femtohertz [fHz] Online | Free frequency-wavelength Converter

Switch units
   

A Quantum Limit of the Electron


The electron Compton wavelength is a fundamental constant in quantum physics that represents the limit at which the wave-like nature of an electron becomes significant in high-energy interactions. It is defined by the equation λ = h / (mₑ c), where h is Planck’s constant, mₑ is the mass of the electron, and c is the speed of light. The value of the electron Compton wavelength is approximately 2.426 × 10⁻¹² meters (or 2.426 picometers). This is significantly larger than the Compton wavelengths of heavier particles like the proton or neutron, reflecting the electron's much smaller mass.


The Compton wavelength is important because it sets a quantum limit on how precisely a particle's position can be defined without introducing enough energy to create particle-antiparticle pairs (like an electron and a positron). It plays a key role in quantum electrodynamics (QED), high-energy physics, and particle interactions involving photons and electrons. For instance, Compton scattering, a process where X-rays scatter off electrons, directly involves this wavelength. Understanding the electron’s Compton wavelength helps physicists analyze the structure of matter, radiation–matter interactions, and the behavior of particles at quantum scales.


Exploring Extremely Low Frequency Phenomena


The femtohertz (fHz) is a unit of frequency equal to 10⁻¹⁵ hertz, representing one cycle per 1,000,000,000,000,000 seconds—which is about 31.7 million years. This incredibly low frequency scale is used primarily in astrophysics, cosmology, and geophysics to describe ultra-slow oscillations and waves occurring over vast cosmic timescales.


Frequencies in the femtohertz range are associated with phenomena such as primordial gravitational waves, oscillations in the cosmic microwave background radiation, and long-term magnetic or seismic cycles on Earth. These waves have correspondingly immense wavelengths, stretching over billions of kilometres or even larger cosmic distances.


Because femtohertz frequencies are far beyond everyday human experience, they are mostly relevant for understanding the deep-time evolution of the universe and large-scale cosmic processes. Studying such slow oscillations helps scientists learn about the formation of galaxies, the behavior of space-time, and fundamental physical laws governing the cosmos.


Using femtohertz as a measurement allows researchers to quantify these vast time periods and wavelengths, connecting tiny frequency values with the immense scale of astrophysical phenomena and Earth’s geological history.



No conversions available for frequency-wavelength.

Convert Electron Compton wavelength to Other Frequency-wavelength Units