Convert exahertz [EHz] to attohertz [aHz] Online | Free frequency-wavelength Converter

Switch units
   

The Realm of Ultra-High Frequency Electromagnetic Waves


The exahertz (EHz) is a unit of frequency equal to 1 quintillion hertz (10¹⁸ Hz), representing one quintillion cycles per second. This extremely high frequency lies deep within the gamma-ray region of the electromagnetic spectrum, associated with some of the most energetic processes in the universe.


Exahertz frequencies correspond to electromagnetic waves with extremely short wavelengths—on the order of picometers or smaller—which are produced by nuclear reactions, cosmic rays, and other high-energy astrophysical phenomena. Gamma rays at these frequencies are emitted by events like supernovae, neutron star collisions, and active galactic nuclei.


Due to their immense energy, exahertz waves can penetrate matter deeply and are used in applications such as cancer radiation therapy and high-energy physics experiments. However, generating and detecting such frequencies on Earth remains highly challenging, requiring advanced particle accelerators and specialized detectors.


Studying exahertz frequencies helps scientists explore fundamental physics, including particle interactions, quantum mechanics, and the conditions of the early universe. These investigations provide insights into the nature of matter, energy, and the forces governing the cosmos.




Measuring Ultra-Low Frequencies


The attohertz (aHz) is an extremely small unit of frequency equal to 10⁻¹⁸ hertz, or one cycle per 10¹⁸ seconds (about 31.7 billion years). This unit is used to describe ultra-low frequency phenomena that occur on cosmic or geological timescales, far beyond everyday human experience.


Attohertz frequencies are relevant in cosmology, astrophysics, and geophysics, where they help scientists study processes that evolve over billions of years. For example, gravitational waves generated by massive cosmic events or the oscillations of the Earth’s magnetic field can be characterized by frequencies in the attohertz range. These waves have enormous wavelengths, often spanning millions or billions of kilometres.


Because the attohertz corresponds to such a long period between cycles, it is mostly used in theoretical research rather than practical applications. Understanding phenomena at this scale gives insight into the fundamental workings of the universe, including the slow evolution of cosmic structures, the expansion of space-time, and the early conditions following the Big Bang.



No conversions available for frequency-wavelength.

Convert exahertz [EHz] to Other Frequency-wavelength Units