Convert nanohertz [nHz] to attohertz [aHz] Online | Free frequency-wavelength Converter

Switch units
   

The Realm of Extremely Slow Oscillations


The nanohertz (nHz) is a unit of frequency equal to 10⁻⁹ hertz, meaning one cycle occurs every 1 billion seconds—about 31.7 years. This incredibly low frequency is important in fields like astrophysics, cosmology, and geophysics, where slow periodic phenomena unfold over decades to centuries.


Nanohertz frequencies are often associated with gravitational waves produced by supermassive black hole binaries orbiting each other over many years. These ultra-low-frequency waves have immense wavelengths, spanning light-years across space. Pulsar timing arrays, which monitor the precise arrival times of pulsar signals, are used to detect such nanohertz gravitational waves, offering insights into galaxy evolution and cosmic structure.


On Earth, nanohertz frequencies can describe long-term oscillations in the geomagnetic field or climate cycles. Studying these slow frequencies helps scientists understand gradual changes in planetary environments and the universe.


Although nanohertz waves are far below everyday human perception and technological applications, they are critical for unraveling the universe's slowest dynamics. Using nanohertz as a unit helps researchers quantify and analyze these grand-scale processes, linking time scales from decades to cosmic evolution.




Measuring Ultra-Low Frequencies


The attohertz (aHz) is an extremely small unit of frequency equal to 10⁻¹⁸ hertz, or one cycle per 10¹⁸ seconds (about 31.7 billion years). This unit is used to describe ultra-low frequency phenomena that occur on cosmic or geological timescales, far beyond everyday human experience.


Attohertz frequencies are relevant in cosmology, astrophysics, and geophysics, where they help scientists study processes that evolve over billions of years. For example, gravitational waves generated by massive cosmic events or the oscillations of the Earth’s magnetic field can be characterized by frequencies in the attohertz range. These waves have enormous wavelengths, often spanning millions or billions of kilometres.


Because the attohertz corresponds to such a long period between cycles, it is mostly used in theoretical research rather than practical applications. Understanding phenomena at this scale gives insight into the fundamental workings of the universe, including the slow evolution of cosmic structures, the expansion of space-time, and the early conditions following the Big Bang.



No conversions available for frequency-wavelength.

Convert nanohertz [nHz] to Other Frequency-wavelength Units