Convert picohertz [pHz] to terahertz [THz] Online | Free frequency-wavelength Converter

Switch units
   

Understanding Ultra-Low Frequency Oscillations


The picohertz (pHz) is a unit of frequency equal to 10⁻¹² hertz, which means one cycle occurs every trillion seconds, or roughly 31,700 years. Picohertz frequencies are incredibly low and are mainly relevant in fields like astrophysics, geophysics, and cosmology, where processes unfold over extremely long timescales.


At picohertz frequencies, waves have extraordinarily long wavelengths, spanning millions to billions of kilometres. Such ultra-low frequencies are associated with phenomena like gravitational waves from massive cosmic events, large-scale oscillations of the Earth’s magnetic field, and long-term climate or geological cycles. Understanding picohertz frequencies allows scientists to study the slowest and largest-scale dynamics of our universe and planet.


Although picohertz frequencies are far beyond human perception and everyday technology, they provide valuable insight into the underlying processes shaping galaxies, solar systems, and Earth’s internal behavior over millennia. Research in this frequency range deepens our knowledge of cosmic evolution, gravitational physics, and Earth sciences.


Using picohertz as a measurement unit helps bridge the gap between familiar time scales and the vast expanses of time and space that govern the natural world at its grandest scale.


Bridging the Gap Between Microwaves and Infrared


The terahertz (THz) is a unit of frequency equal to 1 trillion hertz (10¹² Hz), or one trillion cycles per second. This frequency range lies between the microwave and infrared regions of the electromagnetic spectrum, often called the "terahertz gap" because it is challenging to generate and detect these waves efficiently.


Terahertz waves have unique properties that make them valuable for a variety of scientific, medical, and security applications. In medical imaging, terahertz radiation can penetrate clothing and other non-metallic materials without the harmful effects associated with X-rays, making it promising for non-invasive diagnostics. In security, terahertz scanners are used to detect concealed weapons and substances at airports.


In physics and material science, terahertz spectroscopy helps analyze molecular structures, chemical compositions, and semiconductor properties with high precision. The high frequency of terahertz waves also makes them useful in ultra-fast wireless communication technologies aiming to provide data transfer rates far beyond current Wi-Fi and 5G speeds.


Despite its potential, terahertz technology is still developing, with ongoing research focused on improving sources and detectors to unlock more practical and widespread applications.




No conversions available for frequency-wavelength.

Convert picohertz [pHz] to Other Frequency-wavelength Units