Convert wavelength in micrometres to exahertz [EHz] Online | Free frequency-wavelength Converter

Switch units
   

Understanding Infrared and Thermal Radiation


A micrometre (µm), also known as a micron, is equal to one millionth of a metre (1 µm = 10⁻⁶ m) and is commonly used to express wavelengths of electromagnetic radiation, particularly in the infrared (IR) region of the spectrum. Wavelengths in this range are crucial for understanding heat, thermal imaging, remote sensing, and optical communications. The infrared spectrum typically spans from 0.75 µm to about 1000 µm, with specific regions divided into near-IR (0.75–1.4 µm), mid-IR (1.4–8 µm), and far-IR (8–1000 µm).


Many natural processes, including thermal emission from objects, occur in the micrometre wavelength range. For example, the human body emits peak thermal radiation at around 9–10 µm. Materials scientists, astronomers, and engineers use these wavelengths to study heat flow, detect gases, and design sensors. Optical fibers used in telecommunications also operate efficiently in the near-IR range around 1.3 to 1.55 µm. Using micrometres to describe wavelength offers a practical and precise way to work with electromagnetic waves that are too long for nanometres but still far shorter than those measured in millimetres.


The Realm of Ultra-High Frequency Electromagnetic Waves


The exahertz (EHz) is a unit of frequency equal to 1 quintillion hertz (10¹⁸ Hz), representing one quintillion cycles per second. This extremely high frequency lies deep within the gamma-ray region of the electromagnetic spectrum, associated with some of the most energetic processes in the universe.


Exahertz frequencies correspond to electromagnetic waves with extremely short wavelengths—on the order of picometers or smaller—which are produced by nuclear reactions, cosmic rays, and other high-energy astrophysical phenomena. Gamma rays at these frequencies are emitted by events like supernovae, neutron star collisions, and active galactic nuclei.


Due to their immense energy, exahertz waves can penetrate matter deeply and are used in applications such as cancer radiation therapy and high-energy physics experiments. However, generating and detecting such frequencies on Earth remains highly challenging, requiring advanced particle accelerators and specialized detectors.


Studying exahertz frequencies helps scientists explore fundamental physics, including particle interactions, quantum mechanics, and the conditions of the early universe. These investigations provide insights into the nature of matter, energy, and the forces governing the cosmos.





No conversions available for frequency-wavelength.

Convert wavelength in micrometres to Other Frequency-wavelength Units