Convert wavelength in nanometres [nm] to Electron Compton wavelength Online | Free frequency-wavelength Converter
Measuring Light and Electromagnetic Waves
A nanometre (nm) is a unit of length equal to one billionth of a metre (1 nm = 10⁻⁹ m) and is commonly used to express wavelengths of light and other electromagnetic waves. In this context, nanometres provide a convenient scale for describing phenomena that occur at the atomic and molecular level. Visible light, for example, spans wavelengths from about 380 nm (violet) to 750 nm (red). Ultraviolet (UV) light has shorter wavelengths, typically between 10 nm and 400 nm, while infrared (IR) light has longer wavelengths, from about 750 nm to 1,000,000 nm.
Wavelengths in nanometres are critical in fields like optics, photonics, spectroscopy, and nanotechnology. They determine the energy and color of light, how it interacts with matter, and how it can be manipulated in devices like lasers, fiber optics, and solar cells. Shorter wavelengths (in the UV or X-ray range) carry more energy and are used in applications such as medical imaging and semiconductor fabrication. Understanding and working with wavelengths in nanometres allows scientists and engineers to explore and control the behavior of light at extremely small scales—down to the size of atoms and molecules.
A Quantum Limit of the Electron
The electron Compton wavelength is a fundamental constant in quantum physics that represents the limit at which the wave-like nature of an electron becomes significant in high-energy interactions. It is defined by the equation λ = h / (mₑ c), where h is Planck’s constant, mₑ is the mass of the electron, and c is the speed of light. The value of the electron Compton wavelength is approximately 2.426 × 10⁻¹² meters (or 2.426 picometers). This is significantly larger than the Compton wavelengths of heavier particles like the proton or neutron, reflecting the electron's much smaller mass.
The Compton wavelength is important because it sets a quantum limit on how precisely a particle's position can be defined without introducing enough energy to create particle-antiparticle pairs (like an electron and a positron). It plays a key role in quantum electrodynamics (QED), high-energy physics, and particle interactions involving photons and electrons. For instance, Compton scattering, a process where X-rays scatter off electrons, directly involves this wavelength. Understanding the electron’s Compton wavelength helps physicists analyze the structure of matter, radiation–matter interactions, and the behavior of particles at quantum scales.
No conversions available for frequency-wavelength.