Convert base-11 to base-8 Online | Free numbers Converter

Number System


The base-11 number system, also called the undecimal system, is a positional numeral system that uses eleven distinct symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and A, where A represents ten in decimal. Each digit’s position represents a power of 11, starting from 11011^0 at the rightmost digit and increasing to the left. For example, the base-11 number 2A3 equals 2×112+10×111+3×110=242+110+3=3552 \times 11^2 + 10 \times 11^1 + 3 \times 11^0 = 242 + 110 + 3 = 355 in decimal. Base-11 is mainly used in mathematical studies, number theory, and educational contexts to explore alternative numeral systems. It provides insights into arithmetic operations, positional notation, and conversion between bases. Understanding base-11 helps students and researchers recognize patterns in numbers, learn divisibility rules, and analyze properties of non-decimal systems. While it is not commonly used in computing or daily life, it serves as a useful tool for abstract mathematics and theoretical applications. Studying base-11 strengthens comprehension of how numbers can be represented in various bases, enhances problem-solving skills, and lays the groundwork for exploring higher-level numeral systems such as base-12, base-16, and beyond.


Word count: 200


Number System


The base-8 number system, also known as the octal system, is a positional numeral system that uses eight digits: 0, 1, 2, 3, 4, 5, 6, and 7. Each digit’s position represents a power of 8, starting from 808^0 at the rightmost digit and increasing to the left. For example, the octal number 157 represents 1×82+5×81+7×80=64+40+7=1111 \times 8^2 + 5 \times 8^1 + 7 \times 8^0 = 64 + 40 + 7 = 111 in decimal. Octal is widely used in computing and digital electronics because it offers a compact way to represent binary numbers, with each octal digit corresponding to exactly three binary digits. This makes conversion between binary and octal simple and efficient. Octal numbers are often employed in programming, memory addressing, and digital circuit design, especially in older systems. Understanding base-8 also provides insight into positional numeral systems and arithmetic in non-decimal bases. Although hexadecimal (base-16) has largely replaced octal in modern computing, octal remains important for learning how computers represent and manipulate information. Studying base-8 helps build a strong foundation in number theory, digital logic, and alternative numeral systems, enhancing problem-solving skills and understanding of how different bases encode and process data.



No conversions available for numbers.

Convert base-11 to Other Numbers Units