Convert base-14 to octal Online | Free numbers Converter

Number System


The base-14 number system, also called the tetradecimal system, is a positional numeral system that uses fourteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, and D, where A represents ten, B eleven, C twelve, and D thirteen in decimal. Each digit’s position represents a power of 14, starting from 14014^0 at the rightmost digit and increasing to the left. For example, the base-14 number 3C5 equals 3×142+12×141+5×140=588+168+5=7613 \times 14^2 + 12 \times 14^1 + 5 \times 14^0 = 588 + 168 + 5 = 761 in decimal. Base-14 is primarily studied in mathematics and number theory to explore alternative numeral systems, positional notation, and arithmetic patterns beyond decimal. Understanding base-14 helps in performing arithmetic operations, converting between bases, and analyzing divisibility rules in non-decimal systems. Although it is not commonly used in computing or daily life, studying base-14 provides insights into the structure and flexibility of positional numeral systems. It also strengthens mathematical reasoning, problem-solving skills, and comprehension of abstract number systems. Base-14, like other higher bases, is valuable for theoretical exploration, coding theory, and educational exercises, helping learners understand how numbers can be represented efficiently in various numeral frameworks.


Number System


The octal number system, also known as base-8, is a positional numeral system that uses eight digits: 0, 1, 2, 3, 4, 5, 6, and 7. Each digit represents a power of 8, with the rightmost digit representing 808^0, the next representing 818^1, and so on. For example, the octal number 157 equals 1×82+5×81+7×80=64+40+7=1111 \times 8^2 + 5 \times 8^1 + 7 \times 8^0 = 64 + 40 + 7 = 111 in decimal. Octal was widely used in early computing systems because it provides a more compact representation of binary numbers: each octal digit corresponds exactly to three binary digits. This makes conversion between binary and octal straightforward and simplifies programming and memory addressing in older computer architectures. Although modern systems primarily use hexadecimal (base-16), octal remains important in some computing contexts, such as Unix file permissions, digital electronics, and certain embedded systems. Understanding octal helps in grasping how different number bases can efficiently represent information and interact with binary systems. It also provides a foundation for learning hexadecimal and other positional numeral systems used in digital technology.



No conversions available for numbers.

Convert base-14 to Other Numbers Units