Convert base-4 to base-12 Online | Free numbers Converter

Number System


The base-4 number system, also known as the quaternary system, is a positional numeral system that uses four distinct digits: 0, 1, 2, and 3. Each digit’s position represents a power of 4, starting from 404^0 at the rightmost digit and increasing to the left. This system is similar to binary (base-2) and decimal (base-10) systems but is specifically useful in applications where data can naturally be divided into four states, such as in certain digital circuits or computing systems. For example, the base-4 number 213 represents 2×42+1×41+3×40=32+4+3=392 \times 4^2 + 1 \times 4^1 + 3 \times 4^0 = 32 + 4 + 3 = 39 in decimal. Base-4 is also efficient for representing binary data because every base-4 digit corresponds to exactly two binary digits, simplifying the conversion between binary and quaternary systems. Quaternary systems can be used in computer science, coding theory, and mathematics to reduce complexity in specific algorithms and storage systems. Learning and understanding base-4 helps in exploring alternative numbering systems, enhances computational thinking, and provides insights into how different bases represent quantities and perform arithmetic operations.


Number System


The base-12 number system, also known as the duodecimal system, is a positional numeral system that uses twelve symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, and B, where A represents ten and B represents eleven in decimal. Each digit’s position represents a power of 12, starting from 12012^0 at the rightmost digit and increasing to the left. For example, the base-12 number 3B4 equals 3×122+11×121+4×120=432+132+4=5683 \times 12^2 + 11 \times 12^1 + 4 \times 12^0 = 432 + 132 + 4 = 568 in decimal. Base-12 has historically been used in counting systems, timekeeping, and measurements, such as a dozen or hours on a clock. It is valued for its divisibility, as 12 can be evenly divided by 2, 3, 4, and 6, making fraction representation simpler than in decimal. The duodecimal system is also studied in mathematics for its interesting arithmetic properties, positional notation, and numeral patterns. Understanding base-12 provides insights into alternative counting systems, number theory, and conversions between numeral bases. It enhances problem-solving, logical thinking, and understanding of how different bases represent quantities, making it a useful concept in both historical and theoretical mathematics.



No conversions available for numbers.

Convert base-4 to Other Numbers Units