Convert exagray [EGy] to joule/centigram [J/cg] Online | Free radiation-absorbed-dose Converter
Exagray [EGy]: The Pinnacle of Radiation Dose Measurement
The exagray (EGy) is a unit of absorbed radiation dose equal to 1 quintillion grays (10¹⁸ Gy)—one billion billion grays. This represents an almost incomprehensibly large amount of radiation energy absorbed per kilogram of matter.
Such an extreme scale is purely theoretical and is only applicable in the most abstract realms of theoretical physics and cosmology, including:
Modeling radiation in the earliest moments of the Big Bang.
Exploring extreme environments near cosmic singularities or during high-energy astrophysical phenomena.
Simulating conditions in hypothetical or future ultra-high-energy physics experiments that go beyond current technology.
At the exagray level, matter as we know it cannot exist; atoms and subatomic particles would be utterly annihilated or transformed, making the concept of absorbed dose more a theoretical construct than a measurable quantity.
The exagray emphasizes the sheer versatility of the gray unit, illustrating its ability to scale from the tiniest doses relevant to biology up to the unimaginable extremes of cosmic radiation and fundamental physics.
Joule per Centigram [J/cg]: A Unit of Energy per Mass
The joule per centigram (J/cg) expresses the amount of energy absorbed or delivered per unit mass, specifically joules of energy per centigram (1 centigram = 0.01 grams). This unit represents energy density on a small mass scale.
To relate it to standard radiation dose units: since 1 gray (Gy) equals 1 joule per kilogram (J/kg), and 1 centigram equals 10⁻⁵ kilograms, then
1 J/cg = 1 joule per 0.00001 kg = 100,000 J/kg = 100,000 Gy.
This means that 1 J/cg corresponds to a very high absorbed radiation dose, much greater than typical doses used in medicine or radiation safety.
J/cg could be useful in very specialized fields where energy deposition is considered over tiny masses, such as microdosimetry, materials science, or radiation effects at microscopic scales.
In general, joule per centigram is a high-precision measure for energy density per small mass, but it’s not commonly used in everyday radiation measurement, where grays or their subunits are preferred.
No conversions available for radiation-absorbed-dose.