Convert joule/centigram [J/cg] to teragray [TGy] Online | Free radiation-absorbed-dose Converter
Joule per Centigram [J/cg]: A Unit of Energy per Mass
The joule per centigram (J/cg) expresses the amount of energy absorbed or delivered per unit mass, specifically joules of energy per centigram (1 centigram = 0.01 grams). This unit represents energy density on a small mass scale.
To relate it to standard radiation dose units: since 1 gray (Gy) equals 1 joule per kilogram (J/kg), and 1 centigram equals 10⁻⁵ kilograms, then
1 J/cg = 1 joule per 0.00001 kg = 100,000 J/kg = 100,000 Gy.
This means that 1 J/cg corresponds to a very high absorbed radiation dose, much greater than typical doses used in medicine or radiation safety.
J/cg could be useful in very specialized fields where energy deposition is considered over tiny masses, such as microdosimetry, materials science, or radiation effects at microscopic scales.
In general, joule per centigram is a high-precision measure for energy density per small mass, but it’s not commonly used in everyday radiation measurement, where grays or their subunits are preferred.
Teragray [TGy]: An Ultra-Extreme Radiation Dose Unit
The teragray (TGy) is a unit of absorbed radiation dose equal to 1 trillion grays (10¹² Gy). This represents an inconceivably massive amount of radiation energy absorbed per kilogram of matter, far beyond any dose encountered in practical, medical, or even most scientific contexts.
Teragrays are relevant only in the most extreme theoretical and experimental scenarios, such as:
Modeling radiation effects in high-energy astrophysics, including phenomena near black holes, neutron stars, or gamma-ray bursts.
Simulating conditions inside nuclear explosions or ultra-high-energy particle collisions.
Exploring fundamental radiation-matter interactions at cosmic or subatomic scales in advanced physics research.
At the TGy scale, all known forms of matter would be completely obliterated or transformed at the atomic level, and conventional concepts of radiation damage no longer apply.
The teragray unit serves as a conceptual boundary in the SI radiation dose scale, highlighting the incredible range—from the tiniest doses affecting cells to the extreme energies involved in cosmic events and high-energy physics. It underscores how the gray can theoretically extend to measure energy absorption across all imaginable magnitudes.
No conversions available for radiation-absorbed-dose.