Convert joule/milligram [J/mg] to dekagray [daGy] Online | Free radiation-absorbed-dose Converter
Joule per Milligram [J/mg]: A Unit of Energy Density
The joule per milligram (J/mg) is a unit that expresses energy absorbed or delivered per unit mass, specifically joules of energy per milligram of material. This unit measures energy density on a mass basis, indicating how much energy is deposited in a very small amount of matter.
While not a standard unit for radiation dose, J/mg can be useful in contexts where precise energy deposition in tiny samples or microscopic regions is considered—such as in nanodosimetry, materials science, or biophysics. It helps quantify the energy imparted to small masses, which could be important when studying microscopic effects of radiation or other energy transfer processes.
To relate it to radiation dose units: since 1 gray (Gy) equals 1 joule per kilogram (J/kg), 1 J/mg corresponds to 1,000,000 grays (because 1 mg = 10⁻⁶ kg). This means J/mg represents an extremely high energy density on the radiation dose scale, far beyond typical medical or environmental exposure.
In summary, joule per milligram is a high-precision, high-energy-density measure of energy absorbed per very small mass, useful mainly in specialized scientific applications.
Dekagray [daGy]: A High-Dose Radiation Unit
The dekagray (daGy) is a unit of absorbed radiation dose equal to 10 grays (Gy). Since 1 gray represents the absorption of 1 joule of radiation energy per kilogram of matter, a dekagray corresponds to 10 joules per kilogram, making it a very large dose of ionizing radiation. This level of exposure is far beyond typical diagnostic or environmental levels and is usually relevant only in specific high-dose applications.
The dekagray is most commonly used in radiation biology experiments, radiation sterilization of medical equipment, or industrial applications, such as food irradiation or materials testing. In radiation therapy, especially for cancer treatment, the total dose delivered over several weeks often reaches 60–70 Gy, but this is administered in daily fractions of around 1.8–2.0 Gy. Therefore, even in clinical settings, doses are typically expressed in centigray (cGy) or gray (Gy) for precision and clarity.
Due to its large size, the dekagray is rarely used in clinical documentation but remains a valid SI-derived unit for situations involving very high radiation levels. It serves as a useful unit in specialized fields where substantial energy deposition in materials or tissues needs to be quantified.
No conversions available for radiation-absorbed-dose.