Convert milligray [mGy] to picogray [pGy] Online | Free radiation-absorbed-dose Converter
Milligray [mGy]: A Common Unit in Radiation Dosimetry
The milligray (mGy) is a unit of absorbed radiation dose equal to 10⁻³ grays (Gy), or one-thousandth of a gray. It is widely used in medical, environmental, and industrial applications where moderate levels of ionizing radiation are involved. In medical imaging, such as X-rays, CT scans, and fluoroscopy, radiation doses are often measured in milligrays. For example, a typical chest X-ray may deliver a dose of around 0.1 mGy, while a CT scan can range from 2 to 20 mGy depending on the body part and procedure. The mGy is also used in radiation therapy planning to define exposure to surrounding healthy tissues that must be minimized. In environmental and occupational safety, monitoring radiation exposure in milligrays helps ensure that workers and the public remain within safe limits set by regulatory bodies. The unit is practical because it provides a manageable scale between very small doses (like microgray) and larger therapeutic doses (measured in grays). Understanding and using the milligray is essential for balancing diagnostic or industrial effectiveness with radiation protection and patient or worker safety.
Picogray (pGy)
A picogray (pGy) is a very small unit of measurement used in the field of radiation physics and dosimetry. It belongs to the International System of Units (SI) and is a submultiple of the gray (Gy), which is the standard unit for absorbed radiation dose. One gray represents the absorption of one joule of radiation energy per kilogram of matter. Since a picogray is one trillionth of a gray (10⁻¹² Gy), it is an extremely tiny measure, often used in contexts where radiation levels are very low, such as environmental background radiation or highly sensitive biological experiments. Scientists and health physicists use pGy to quantify extremely small exposures that would otherwise be impractical to express in whole grays or even milligrays. For example, natural background radiation received by living organisms may sometimes be expressed in picograys when considering minute variations across different environments. This unit is important because even very small amounts of radiation can be significant in specialized studies, especially in medicine, space research, and nuclear safety. The adoption of the picogray allows researchers to describe radiation doses with greater precision and ensures consistency in international scientific communication.
No conversions available for radiation-absorbed-dose.