Convert petagray [PGy] to exagray [EGy] Online | Free radiation-absorbed-dose Converter
Petagray [PGy]: An Unimaginably High Radiation Dose
The petagray (PGy) is a unit of absorbed radiation dose equal to 1,000 trillion grays (10¹⁵ Gy)—that’s one quadrillion grays. This is an extraordinarily vast amount of radiation energy absorbed per kilogram of matter, far beyond any natural or engineered radiation exposure known to humanity.
The petagray is purely theoretical and only relevant in extreme astrophysical phenomena or fundamental physics simulations, such as:
Modeling the intense radiation environments near supermassive black holes or during the most energetic cosmic events.
Exploring theoretical limits of matter-radiation interactions at cosmic or quantum scales.
Simulating conditions immediately following high-energy particle collisions or gamma-ray bursts.
At doses this high, all conventional matter would be utterly destroyed or transformed, and the concept of dose loses practical meaning.
The petagray highlights the vast scope of radiation measurement, showing how the gray unit can be scaled to express energy absorption at levels far beyond any earthly or practical scenario, emphasizing its role as a universal scientific measure across all scales.
Exagray [EGy]: The Pinnacle of Radiation Dose Measurement
The exagray (EGy) is a unit of absorbed radiation dose equal to 1 quintillion grays (10¹⁸ Gy)—one billion billion grays. This represents an almost incomprehensibly large amount of radiation energy absorbed per kilogram of matter.
Such an extreme scale is purely theoretical and is only applicable in the most abstract realms of theoretical physics and cosmology, including:
Modeling radiation in the earliest moments of the Big Bang.
Exploring extreme environments near cosmic singularities or during high-energy astrophysical phenomena.
Simulating conditions in hypothetical or future ultra-high-energy physics experiments that go beyond current technology.
At the exagray level, matter as we know it cannot exist; atoms and subatomic particles would be utterly annihilated or transformed, making the concept of absorbed dose more a theoretical construct than a measurable quantity.
The exagray emphasizes the sheer versatility of the gray unit, illustrating its ability to scale from the tiniest doses relevant to biology up to the unimaginable extremes of cosmic radiation and fundamental physics.
No conversions available for radiation-absorbed-dose.