Convert rad [rd] to microgray [µGy] Online | Free radiation-absorbed-dose Converter
Rad [rd]: A Legacy Unit of Absorbed Radiation Dose
The rad (short for radiation absorbed dose) is a legacy unit used to measure the amount of ionizing radiation energy absorbed per unit mass of material. It was widely used before the adoption of the gray (Gy) in the International System of Units (SI).
1 rad = 0.01 gray (Gy)
This means that 1 rad corresponds to the absorption of 0.01 joules of radiation energy per kilogram of matter.
The rad was commonly used in medical, industrial, and scientific settings to quantify radiation doses. Although now largely replaced by the gray for consistency and international standardization, the rad is still sometimes referenced in older research, medical records, and certain fields.
The rad and its subunits (like the millirad) helped establish the groundwork for understanding radiation exposure and effects before the transition to the more precise and universally accepted gray unit.
Microgray [µGy]: A Small Unit for Measuring Radiation Exposure
The microgray (µGy) is a unit of absorbed radiation dose equal to 10⁻⁶ grays (Gy), or one-millionth of a gray. The gray (Gy) is the SI unit used to measure how much ionizing radiation energy is absorbed per kilogram of matter. A microgray represents a very small amount of absorbed radiation, making it useful in situations involving low-dose exposure. This unit is commonly used in environmental monitoring, radiological protection, and diagnostic radiology, where understanding and controlling low radiation levels is important. For example, background radiation from natural sources like soil, cosmic rays, or building materials can be measured in micrograys. In medical contexts, certain diagnostic procedures such as dental X-rays or mammograms may deliver doses in the µGy range. Though small, even low levels of ionizing radiation can have cumulative effects, especially over long periods or in sensitive populations. The microgray allows for precise measurement and monitoring of these exposures, helping ensure safety standards are met. Its use supports regulatory compliance, public health, and scientific research related to low-level radiation and its biological effects.
No conversions available for radiation-absorbed-dose.