Convert megahertz [MHz] to femtohertz [fHz] Online | Free frequency-wavelength Converter
High-Frequency Waves in Communication and Technology
The megahertz (MHz) is a unit of frequency equal to 1,000,000 hertz (10⁶ Hz), representing one million cycles per second. Frequencies in the megahertz range are crucial in many modern technologies, especially in radio communications, broadcasting, and electronics.
In radio broadcasting, many AM and FM radio stations transmit signals in the MHz range. FM radio typically operates between 88 MHz and 108 MHz, providing high-quality audio signals for millions of listeners worldwide. Television broadcasting and two-way radio communications also use megahertz frequencies to transmit sound and images over long distances.
In electronics, MHz frequencies are key in the operation of microprocessors, oscillators, and wireless communication devices such as cell phones, Wi-Fi routers, and Bluetooth gadgets. The clock speed of many computer processors is measured in MHz (and GHz), determining how fast the processor can execute instructions.
Moreover, MHz frequencies are important in scientific instruments like radar systems and medical imaging devices, where high-frequency waves improve resolution and data accuracy.
Understanding and utilizing megahertz frequencies allows engineers to design efficient communication systems and advanced electronic devices that power today’s digital world.
Exploring Extremely Low Frequency Phenomena
The femtohertz (fHz) is a unit of frequency equal to 10⁻¹⁵ hertz, representing one cycle per 1,000,000,000,000,000 seconds—which is about 31.7 million years. This incredibly low frequency scale is used primarily in astrophysics, cosmology, and geophysics to describe ultra-slow oscillations and waves occurring over vast cosmic timescales.
Frequencies in the femtohertz range are associated with phenomena such as primordial gravitational waves, oscillations in the cosmic microwave background radiation, and long-term magnetic or seismic cycles on Earth. These waves have correspondingly immense wavelengths, stretching over billions of kilometres or even larger cosmic distances.
Because femtohertz frequencies are far beyond everyday human experience, they are mostly relevant for understanding the deep-time evolution of the universe and large-scale cosmic processes. Studying such slow oscillations helps scientists learn about the formation of galaxies, the behavior of space-time, and fundamental physical laws governing the cosmos.
Using femtohertz as a measurement allows researchers to quantify these vast time periods and wavelengths, connecting tiny frequency values with the immense scale of astrophysical phenomena and Earth’s geological history.
No conversions available for frequency-wavelength.