Convert megahertz [MHz] to microhertz [µHz] Online | Free frequency-wavelength Converter

Switch units
   

High-Frequency Waves in Communication and Technology


The megahertz (MHz) is a unit of frequency equal to 1,000,000 hertz (10⁶ Hz), representing one million cycles per second. Frequencies in the megahertz range are crucial in many modern technologies, especially in radio communications, broadcasting, and electronics.


In radio broadcasting, many AM and FM radio stations transmit signals in the MHz range. FM radio typically operates between 88 MHz and 108 MHz, providing high-quality audio signals for millions of listeners worldwide. Television broadcasting and two-way radio communications also use megahertz frequencies to transmit sound and images over long distances.


In electronics, MHz frequencies are key in the operation of microprocessors, oscillators, and wireless communication devices such as cell phones, Wi-Fi routers, and Bluetooth gadgets. The clock speed of many computer processors is measured in MHz (and GHz), determining how fast the processor can execute instructions.


Moreover, MHz frequencies are important in scientific instruments like radar systems and medical imaging devices, where high-frequency waves improve resolution and data accuracy.


Understanding and utilizing megahertz frequencies allows engineers to design efficient communication systems and advanced electronic devices that power today’s digital world.


Exploring Ultra-Slow Periodic Phenomena


The microhertz (µHz) is a unit of frequency equal to 10⁻⁶ hertz, meaning one cycle occurs every 1,000,000 seconds or approximately 11.6 days. This very low frequency range is significant in astrophysics, geophysics, and various scientific disciplines that study slow, periodic phenomena spanning days to weeks.


In astrophysics, microhertz frequencies are important for observing oscillations in stars, including our Sun. Solar oscillations, known as helioseismic waves, occur in the microhertz range and provide valuable insights into the Sun’s internal structure and dynamics. These oscillations help scientists understand stellar processes, energy transport, and magnetic activity.


On Earth, microhertz frequencies correspond to slow geophysical processes such as tectonic plate motions, long-period seismic waves, and atmospheric tides. These phenomena unfold over days and influence climate and geological activity.


Because microhertz frequencies represent slow oscillations with very long wavelengths (thousands to millions of kilometres), they provide a unique window into dynamic processes that evolve over extended timeframes. Studying microhertz waves allows researchers to connect daily to weekly timescales with broader natural cycles.



No conversions available for frequency-wavelength.

Convert megahertz [MHz] to Other Frequency-wavelength Units