Convert wavelength in centimetres [cm] to attohertz [aHz] Online | Free frequency-wavelength Converter
A Key Scale in Radio and Microwave Technology
A centimetre (cm) is a unit of length equal to 10⁻² metres, and it is commonly used to express the wavelengths of radio and microwave radiation. Electromagnetic waves with wavelengths in the centimetre range typically fall within the radio frequency (RF) and microwave bands, covering frequencies from about 3 GHz to 30 GHz (for wavelengths between 10 cm and 1 cm). These waves are essential in a wide variety of applications, including Wi-Fi, Bluetooth, microwave ovens, radar, and satellite communications.
For example, Wi-Fi signals often operate at 2.4 GHz, which corresponds to a wavelength of about 12.5 cm, and microwave ovens use 2.45 GHz, or around 12.2 cm. These wavelengths are long enough to penetrate walls and other obstacles, making them ideal for communication and sensing. Centimetre-scale wavelengths also allow for the use of reasonably sized antennas in consumer devices and radar systems.
Using centimetres as a unit for wavelength provides a practical scale for understanding and designing devices that use radio and microwave frequencies. It simplifies communication between scientists, engineers, and technicians working in telecommunications, aerospace, medical imaging, and remote sensing.
Measuring Ultra-Low Frequencies
The attohertz (aHz) is an extremely small unit of frequency equal to 10⁻¹⁸ hertz, or one cycle per 10¹⁸ seconds (about 31.7 billion years). This unit is used to describe ultra-low frequency phenomena that occur on cosmic or geological timescales, far beyond everyday human experience.
Attohertz frequencies are relevant in cosmology, astrophysics, and geophysics, where they help scientists study processes that evolve over billions of years. For example, gravitational waves generated by massive cosmic events or the oscillations of the Earth’s magnetic field can be characterized by frequencies in the attohertz range. These waves have enormous wavelengths, often spanning millions or billions of kilometres.
Because the attohertz corresponds to such a long period between cycles, it is mostly used in theoretical research rather than practical applications. Understanding phenomena at this scale gives insight into the fundamental workings of the universe, including the slow evolution of cosmic structures, the expansion of space-time, and the early conditions following the Big Bang.
No conversions available for frequency-wavelength.