Convert wavelength in centimetres [cm] to wavelength in petametres Online | Free frequency-wavelength Converter

Switch units
   

A Key Scale in Radio and Microwave Technology


A centimetre (cm) is a unit of length equal to 10⁻² metres, and it is commonly used to express the wavelengths of radio and microwave radiation. Electromagnetic waves with wavelengths in the centimetre range typically fall within the radio frequency (RF) and microwave bands, covering frequencies from about 3 GHz to 30 GHz (for wavelengths between 10 cm and 1 cm). These waves are essential in a wide variety of applications, including Wi-Fi, Bluetooth, microwave ovens, radar, and satellite communications.


For example, Wi-Fi signals often operate at 2.4 GHz, which corresponds to a wavelength of about 12.5 cm, and microwave ovens use 2.45 GHz, or around 12.2 cm. These wavelengths are long enough to penetrate walls and other obstacles, making them ideal for communication and sensing. Centimetre-scale wavelengths also allow for the use of reasonably sized antennas in consumer devices and radar systems.


Using centimetres as a unit for wavelength provides a practical scale for understanding and designing devices that use radio and microwave frequencies. It simplifies communication between scientists, engineers, and technicians working in telecommunications, aerospace, medical imaging, and remote sensing.


The Scale of Interstellar and Cosmological Waves


A petametre (Pm) equals 1,000 terametres (10¹⁵ metres), representing unimaginably vast distances that describe the longest electromagnetic wavelengths in the universe. These wavelengths correspond to frequencies in the attohertz (10⁻¹⁸ Hz) and lower ranges, which are mostly relevant in cosmology, astrophysics, and the study of gravitational waves and large-scale cosmic phenomena.


For context, a frequency of 1 attohertz (10⁻¹⁸ Hz) corresponds to a wavelength of approximately 300 petametres. This scale is far beyond any human-made signals and reflects waves that stretch across entire galaxies or even clusters of galaxies. Such waves help scientists study the cosmic microwave background (CMB) fluctuations, the large-scale structure of the universe, and primordial gravitational waves created shortly after the Big Bang.


Using petametres to measure wavelength allows researchers to grasp the vastness of these cosmic oscillations and the slowest processes influencing the universe’s evolution. These extreme wavelengths provide crucial insight into the origins, expansion, and ultimate fate of the cosmos.





No conversions available for frequency-wavelength.

Convert wavelength in centimetres [cm] to Other Frequency-wavelength Units