Convert picogray [pGy] to hectogray [hGy] Online | Free radiation-absorbed-dose Converter
Picogray (pGy)
A picogray (pGy) is a very small unit of measurement used in the field of radiation physics and dosimetry. It belongs to the International System of Units (SI) and is a submultiple of the gray (Gy), which is the standard unit for absorbed radiation dose. One gray represents the absorption of one joule of radiation energy per kilogram of matter. Since a picogray is one trillionth of a gray (10⁻¹² Gy), it is an extremely tiny measure, often used in contexts where radiation levels are very low, such as environmental background radiation or highly sensitive biological experiments. Scientists and health physicists use pGy to quantify extremely small exposures that would otherwise be impractical to express in whole grays or even milligrays. For example, natural background radiation received by living organisms may sometimes be expressed in picograys when considering minute variations across different environments. This unit is important because even very small amounts of radiation can be significant in specialized studies, especially in medicine, space research, and nuclear safety. The adoption of the picogray allows researchers to describe radiation doses with greater precision and ensures consistency in international scientific communication.
Hectogray [hGy]: Measuring Extremely High Radiation Doses
The hectogray (hGy) is a unit of absorbed radiation dose equal to 100 grays (Gy). Since 1 gray corresponds to the absorption of 1 joule of ionizing radiation energy per kilogram of matter, a hectogray represents an extremely large energy dose—100 joules per kilogram. This unit is far above the levels used in medical or environmental contexts.
In radiation therapy, for example, cancer patients typically receive total doses of 60–70 Gy, delivered in small daily fractions. A dose of 100 Gy (or 1 hGy) to the human body would cause severe, often fatal radiation damage, and is not survivable if delivered systemically. Therefore, the hectogray is not used in clinical medicine.
However, the hectogray may be relevant in specialized industrial applications such as:
Radiation sterilization of medical equipment and food, where extremely high doses are used to eliminate all biological contaminants.
Radiation hardness testing of materials and electronics, particularly for aerospace or nuclear environments.
Experimental radiobiology, where specific tissues or small organisms are exposed to very high doses to study extreme effects.
Although rarely used in everyday practice, the hectogray is an important unit in high-dose radiation science and engineering, where understanding material and biological responses to extreme exposure is critical.
No conversions available for radiation-absorbed-dose.