Convert picogray [pGy] to nanogray [nGy] Online | Free radiation-absorbed-dose Converter
Picogray (pGy)
A picogray (pGy) is a very small unit of measurement used in the field of radiation physics and dosimetry. It belongs to the International System of Units (SI) and is a submultiple of the gray (Gy), which is the standard unit for absorbed radiation dose. One gray represents the absorption of one joule of radiation energy per kilogram of matter. Since a picogray is one trillionth of a gray (10⁻¹² Gy), it is an extremely tiny measure, often used in contexts where radiation levels are very low, such as environmental background radiation or highly sensitive biological experiments. Scientists and health physicists use pGy to quantify extremely small exposures that would otherwise be impractical to express in whole grays or even milligrays. For example, natural background radiation received by living organisms may sometimes be expressed in picograys when considering minute variations across different environments. This unit is important because even very small amounts of radiation can be significant in specialized studies, especially in medicine, space research, and nuclear safety. The adoption of the picogray allows researchers to describe radiation doses with greater precision and ensures consistency in international scientific communication.
Nanogray [nGy]: Measuring Extremely Low Radiation Doses
The nanogray (nGy) is a unit of absorbed radiation dose equal to 10⁻⁹ grays (Gy). Since the gray (Gy) is the SI unit that measures the amount of ionizing radiation absorbed by a substance (typically per kilogram), one nanogray represents one-billionth of a gray. This tiny unit is used in situations where radiation doses are extremely low, such as background environmental radiation, space research, or ultra-sensitive radiation detection studies. For example, scientists may use nanograys to measure the small amounts of cosmic radiation received by satellites or astronauts over long periods, or to study natural background radiation in very low-radiation areas. Although it is too small to be relevant for most medical or industrial applications—where doses are typically measured in milligrays (mGy) or grays (Gy)—the nanogray is valuable in research that focuses on long-term, low-level exposure and its possible biological effects. It allows for precise tracking and modeling of minimal energy deposits in matter. The use of the nanogray highlights the importance of accurate measurement at even the smallest scales when studying radiation’s impact on the environment, health, or sensitive equipment.
No conversions available for radiation-absorbed-dose.