Convert wavelength in exametres to picohertz [pHz] Online | Free frequency-wavelength Converter

Switch units
   

The Vastest Scales of Cosmic Waves


An exametre (Em) is equal to 1,000 petametres (10¹⁸ metres), representing one of the largest units of length used to describe the longest electromagnetic wavelengths and gravitational waves in the universe. At this scale, wavelengths correspond to frequencies in the zeptohertz (10⁻²¹ Hz) range and lower, which are incredibly slow oscillations occurring over billions of years and spanning distances larger than entire galaxy superclusters.


For example, waves with a frequency of around 1 zeptohertz have wavelengths on the order of 300 exametres. These enormous waves are primarily theoretical and are significant in cosmology and astrophysics for studying the large-scale structure of the universe, primordial fluctuations from the Big Bang, and the behavior of space-time itself.


Using exametres to express wavelength helps scientists conceptualize the almost incomprehensible vastness of the cosmos. These extreme wavelengths provide key insights into the fundamental nature of the universe, including gravitational wave backgrounds and the evolution of cosmic structures on the grandest scales.


Understanding Ultra-Low Frequency Oscillations


The picohertz (pHz) is a unit of frequency equal to 10⁻¹² hertz, which means one cycle occurs every trillion seconds, or roughly 31,700 years. Picohertz frequencies are incredibly low and are mainly relevant in fields like astrophysics, geophysics, and cosmology, where processes unfold over extremely long timescales.


At picohertz frequencies, waves have extraordinarily long wavelengths, spanning millions to billions of kilometres. Such ultra-low frequencies are associated with phenomena like gravitational waves from massive cosmic events, large-scale oscillations of the Earth’s magnetic field, and long-term climate or geological cycles. Understanding picohertz frequencies allows scientists to study the slowest and largest-scale dynamics of our universe and planet.


Although picohertz frequencies are far beyond human perception and everyday technology, they provide valuable insight into the underlying processes shaping galaxies, solar systems, and Earth’s internal behavior over millennia. Research in this frequency range deepens our knowledge of cosmic evolution, gravitational physics, and Earth sciences.


Using picohertz as a measurement unit helps bridge the gap between familiar time scales and the vast expanses of time and space that govern the natural world at its grandest scale.



No conversions available for frequency-wavelength.

Convert wavelength in exametres to Other Frequency-wavelength Units