Convert wavelength in exametres to wavelength in gigametres Online | Free frequency-wavelength Converter
The Vastest Scales of Cosmic Waves
An exametre (Em) is equal to 1,000 petametres (10¹⁸ metres), representing one of the largest units of length used to describe the longest electromagnetic wavelengths and gravitational waves in the universe. At this scale, wavelengths correspond to frequencies in the zeptohertz (10⁻²¹ Hz) range and lower, which are incredibly slow oscillations occurring over billions of years and spanning distances larger than entire galaxy superclusters.
For example, waves with a frequency of around 1 zeptohertz have wavelengths on the order of 300 exametres. These enormous waves are primarily theoretical and are significant in cosmology and astrophysics for studying the large-scale structure of the universe, primordial fluctuations from the Big Bang, and the behavior of space-time itself.
Using exametres to express wavelength helps scientists conceptualize the almost incomprehensible vastness of the cosmos. These extreme wavelengths provide key insights into the fundamental nature of the universe, including gravitational wave backgrounds and the evolution of cosmic structures on the grandest scales.
The Scale of Extremely Low Frequency and Astrophysical Waves
A gigametre (Gm) is equal to 1,000,000,000 metres (10⁹ m) and is used to describe extraordinarily long wavelengths found primarily in the extremely low frequency (ELF) band and in astrophysical phenomena. These wavelengths correspond to frequencies in the millihertz to microhertz range, far below typical human-made radio communications. Gigametre-scale wavelengths are associated with very slow oscillations in space plasmas, planetary magnetospheres, and cosmic radio waves.
For example, a frequency of 1 microhertz (10⁻⁶ Hz) corresponds to a wavelength of about 300 million kilometres (300 Gm), which is roughly twice the distance from the Earth to the Sun. Such enormous wavelengths are significant in studying solar-terrestrial interactions, long-period gravitational waves, and other phenomena in astrophysics and cosmology.
Although gigametre wavelengths are not practical for terrestrial communications, they help scientists understand the large-scale electromagnetic environment of the solar system and beyond. Using the gigametre unit allows researchers to quantify these immense scales and analyze signals and waves that influence planetary environments, space weather, and the interstellar medium.
No conversions available for frequency-wavelength.