Convert wavelength in exametres to wavelength in kilometres Online | Free frequency-wavelength Converter
The Vastest Scales of Cosmic Waves
An exametre (Em) is equal to 1,000 petametres (10¹⁸ metres), representing one of the largest units of length used to describe the longest electromagnetic wavelengths and gravitational waves in the universe. At this scale, wavelengths correspond to frequencies in the zeptohertz (10⁻²¹ Hz) range and lower, which are incredibly slow oscillations occurring over billions of years and spanning distances larger than entire galaxy superclusters.
For example, waves with a frequency of around 1 zeptohertz have wavelengths on the order of 300 exametres. These enormous waves are primarily theoretical and are significant in cosmology and astrophysics for studying the large-scale structure of the universe, primordial fluctuations from the Big Bang, and the behavior of space-time itself.
Using exametres to express wavelength helps scientists conceptualize the almost incomprehensible vastness of the cosmos. These extreme wavelengths provide key insights into the fundamental nature of the universe, including gravitational wave backgrounds and the evolution of cosmic structures on the grandest scales.
Understanding Extremely Low Frequency Waves
A kilometre (km) is a unit of length equal to 1,000 metres, and in the context of electromagnetic waves, it is used to describe extremely long wavelengths, typically in the Very Low Frequency (VLF) and Extremely Low Frequency (ELF) ranges. These wavelengths correspond to very low frequencies, usually below 300 kHz, and are commonly used in long-distance radio communication, submarine communication, navigation systems, and geophysical research.
For instance, a frequency of 30 kHz has a wavelength of 10 km, while 3 kHz corresponds to a wavelength of 100 km. These long wavelengths can travel great distances, penetrate seawater, and diffuse around obstacles, making them ideal for communication with submerged submarines and in areas where traditional signals cannot reach. ELF waves, with wavelengths of hundreds to thousands of kilometres, are also used in Earth monitoring, such as detecting seismic or lightning activity.
Using kilometres to measure wavelength allows scientists and engineers to understand and design systems for global communication and natural signal monitoring. Although challenging to generate and detect, kilometre-scale wavelengths play a vital role in specialized but critical applications.
No conversions available for frequency-wavelength.