Convert wavelength in hectometres to terahertz [THz] Online | Free frequency-wavelength Converter
Describing Very Low Frequency Radio Waves
A hectometre (hm) is a unit of length equal to 100 metres, and it is used to describe very long wavelengths in the Very Low Frequency (VLF) and Low Frequency (LF) bands of the electromagnetic spectrum. Wavelengths in the hectometre range correspond to frequencies between approximately 3 kHz and 3 MHz. These long wavelengths are typically used for maritime navigation, military submarine communication, AM radio broadcasting, and time signal transmissions.
For example, a signal at 300 kHz has a wavelength of 1 kilometre, or 10 hectometres, and a signal at 1 MHz corresponds to 3 hectometres. These long wavelengths have the unique ability to travel long distances and penetrate water and the ground, which is why they are used in submarine communications and emergency broadcast systems.
Using hectometres to express wavelength offers a practical scale for understanding wave propagation over great distances. It also aids in antenna design, where very large antennasβoften hundreds of metres longβare needed to efficiently transmit or receive these frequencies. Understanding wavelength in hectometres is important in geophysics, radio astronomy, and large-scale communications infrastructure.
Bridging the Gap Between Microwaves and Infrared
The terahertz (THz) is a unit of frequency equal to 1 trillion hertz (10ΒΉΒ² Hz), or one trillion cycles per second. This frequency range lies between the microwave and infrared regions of the electromagnetic spectrum, often called the "terahertz gap" because it is challenging to generate and detect these waves efficiently.
Terahertz waves have unique properties that make them valuable for a variety of scientific, medical, and security applications. In medical imaging, terahertz radiation can penetrate clothing and other non-metallic materials without the harmful effects associated with X-rays, making it promising for non-invasive diagnostics. In security, terahertz scanners are used to detect concealed weapons and substances at airports.
In physics and material science, terahertz spectroscopy helps analyze molecular structures, chemical compositions, and semiconductor properties with high precision. The high frequency of terahertz waves also makes them useful in ultra-fast wireless communication technologies aiming to provide data transfer rates far beyond current Wi-Fi and 5G speeds.
Despite its potential, terahertz technology is still developing, with ongoing research focused on improving sources and detectors to unlock more practical and widespread applications.
No conversions available for frequency-wavelength.