Convert wavelength in hectometres to wavelength in kilometres Online | Free frequency-wavelength Converter
Describing Very Low Frequency Radio Waves
A hectometre (hm) is a unit of length equal to 100 metres, and it is used to describe very long wavelengths in the Very Low Frequency (VLF) and Low Frequency (LF) bands of the electromagnetic spectrum. Wavelengths in the hectometre range correspond to frequencies between approximately 3 kHz and 3 MHz. These long wavelengths are typically used for maritime navigation, military submarine communication, AM radio broadcasting, and time signal transmissions.
For example, a signal at 300 kHz has a wavelength of 1 kilometre, or 10 hectometres, and a signal at 1 MHz corresponds to 3 hectometres. These long wavelengths have the unique ability to travel long distances and penetrate water and the ground, which is why they are used in submarine communications and emergency broadcast systems.
Using hectometres to express wavelength offers a practical scale for understanding wave propagation over great distances. It also aids in antenna design, where very large antennasβoften hundreds of metres longβare needed to efficiently transmit or receive these frequencies. Understanding wavelength in hectometres is important in geophysics, radio astronomy, and large-scale communications infrastructure.
Understanding Extremely Low Frequency Waves
A kilometre (km) is a unit of length equal to 1,000 metres, and in the context of electromagnetic waves, it is used to describe extremely long wavelengths, typically in the Very Low Frequency (VLF) and Extremely Low Frequency (ELF) ranges. These wavelengths correspond to very low frequencies, usually below 300 kHz, and are commonly used in long-distance radio communication, submarine communication, navigation systems, and geophysical research.
For instance, a frequency of 30 kHz has a wavelength of 10 km, while 3 kHz corresponds to a wavelength of 100 km. These long wavelengths can travel great distances, penetrate seawater, and diffuse around obstacles, making them ideal for communication with submerged submarines and in areas where traditional signals cannot reach. ELF waves, with wavelengths of hundreds to thousands of kilometres, are also used in Earth monitoring, such as detecting seismic or lightning activity.
Using kilometres to measure wavelength allows scientists and engineers to understand and design systems for global communication and natural signal monitoring. Although challenging to generate and detect, kilometre-scale wavelengths play a vital role in specialized but critical applications.
No conversions available for frequency-wavelength.