Convert base-12 to base-16 Online | Free numbers Converter

Number System


The base-12 number system, also known as the duodecimal system, is a positional numeral system that uses twelve symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, and B, where A represents ten and B represents eleven in decimal. Each digit’s position represents a power of 12, starting from 12012^0 at the rightmost digit and increasing to the left. For example, the base-12 number 3B4 equals 3×122+11×121+4×120=432+132+4=5683 \times 12^2 + 11 \times 12^1 + 4 \times 12^0 = 432 + 132 + 4 = 568 in decimal. Base-12 has historically been used in counting systems, timekeeping, and measurements, such as a dozen or hours on a clock. It is valued for its divisibility, as 12 can be evenly divided by 2, 3, 4, and 6, making fraction representation simpler than in decimal. The duodecimal system is also studied in mathematics for its interesting arithmetic properties, positional notation, and numeral patterns. Understanding base-12 provides insights into alternative counting systems, number theory, and conversions between numeral bases. It enhances problem-solving, logical thinking, and understanding of how different bases represent quantities, making it a useful concept in both historical and theoretical mathematics.


Number System


The base-16 number system, also known as the hexadecimal system, is a positional numeral system that uses sixteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F, where A represents ten, B eleven, C twelve, D thirteen, E fourteen, and F fifteen in decimal. Each digit’s position represents a power of 16, starting from 16016^0 at the rightmost digit and increasing to the left. For example, the hexadecimal number 2F3 equals 2×162+15×161+3×160=512+240+3=7552 \times 16^2 + 15 \times 16^1 + 3 \times 16^0 = 512 + 240 + 3 = 755 in decimal. Hexadecimal is widely used in computing and digital electronics because it provides a compact way to represent binary numbers, with each hex digit corresponding exactly to four binary digits. This simplifies conversions between binary and hexadecimal and makes it easier to read and write large binary values. Hexadecimal numbers are commonly used in programming, memory addressing, color codes in web design, and digital circuit design. Understanding base-16 is essential for computer scientists, engineers, and programmers, as it bridges the gap between human-readable numbers and machine-level binary code, enabling efficient computation, debugging, and data representation.



No conversions available for numbers.

Convert base-12 to Other Numbers Units