Convert wavelength in terametres to Electron Compton wavelength Online | Free frequency-wavelength Converter

Switch units
   

Cosmic Scales of Electromagnetic Waves


A terametre (Tm) is equal to 1 trillion metres (10¹² m), an enormous unit used to describe wavelengths on an interplanetary or even interstellar scale. Such colossal wavelengths correspond to extremely low frequencies in the picohertz to femtohertz range and are primarily relevant in astrophysics, cosmology, and gravitational wave studies. At this scale, electromagnetic or gravitational waves can span distances comparable to the size of the solar system or beyond.


For example, a frequency of 1 femtohertz (10⁻¹⁵ Hz) corresponds to a wavelength of approximately 300 terametres, or 300 billion kilometres — about twice the distance from the Sun to Pluto. These wavelengths are far beyond practical terrestrial communication but are important for understanding phenomena like primordial gravitational waves, cosmic microwave background fluctuations, and large-scale cosmic structures.


Using terametres to express wavelength helps scientists conceptualize and study the vast, slow oscillations that shape the universe over billions of years. These extreme wavelengths offer insight into the very fabric of space-time, the origins of the universe, and processes occurring on the grandest cosmic scales.




A Quantum Limit of the Electron


The electron Compton wavelength is a fundamental constant in quantum physics that represents the limit at which the wave-like nature of an electron becomes significant in high-energy interactions. It is defined by the equation λ = h / (mₑ c), where h is Planck’s constant, mₑ is the mass of the electron, and c is the speed of light. The value of the electron Compton wavelength is approximately 2.426 × 10⁻¹² meters (or 2.426 picometers). This is significantly larger than the Compton wavelengths of heavier particles like the proton or neutron, reflecting the electron's much smaller mass.


The Compton wavelength is important because it sets a quantum limit on how precisely a particle's position can be defined without introducing enough energy to create particle-antiparticle pairs (like an electron and a positron). It plays a key role in quantum electrodynamics (QED), high-energy physics, and particle interactions involving photons and electrons. For instance, Compton scattering, a process where X-rays scatter off electrons, directly involves this wavelength. Understanding the electron’s Compton wavelength helps physicists analyze the structure of matter, radiation–matter interactions, and the behavior of particles at quantum scales.



No conversions available for frequency-wavelength.

Convert wavelength in terametres to Other Frequency-wavelength Units