Convert wavelength in terametres to wavelength in kilometres Online | Free frequency-wavelength Converter
Cosmic Scales of Electromagnetic Waves
A terametre (Tm) is equal to 1 trillion metres (10¹² m), an enormous unit used to describe wavelengths on an interplanetary or even interstellar scale. Such colossal wavelengths correspond to extremely low frequencies in the picohertz to femtohertz range and are primarily relevant in astrophysics, cosmology, and gravitational wave studies. At this scale, electromagnetic or gravitational waves can span distances comparable to the size of the solar system or beyond.
For example, a frequency of 1 femtohertz (10⁻¹⁵ Hz) corresponds to a wavelength of approximately 300 terametres, or 300 billion kilometres — about twice the distance from the Sun to Pluto. These wavelengths are far beyond practical terrestrial communication but are important for understanding phenomena like primordial gravitational waves, cosmic microwave background fluctuations, and large-scale cosmic structures.
Using terametres to express wavelength helps scientists conceptualize and study the vast, slow oscillations that shape the universe over billions of years. These extreme wavelengths offer insight into the very fabric of space-time, the origins of the universe, and processes occurring on the grandest cosmic scales.
Understanding Extremely Low Frequency Waves
A kilometre (km) is a unit of length equal to 1,000 metres, and in the context of electromagnetic waves, it is used to describe extremely long wavelengths, typically in the Very Low Frequency (VLF) and Extremely Low Frequency (ELF) ranges. These wavelengths correspond to very low frequencies, usually below 300 kHz, and are commonly used in long-distance radio communication, submarine communication, navigation systems, and geophysical research.
For instance, a frequency of 30 kHz has a wavelength of 10 km, while 3 kHz corresponds to a wavelength of 100 km. These long wavelengths can travel great distances, penetrate seawater, and diffuse around obstacles, making them ideal for communication with submerged submarines and in areas where traditional signals cannot reach. ELF waves, with wavelengths of hundreds to thousands of kilometres, are also used in Earth monitoring, such as detecting seismic or lightning activity.
Using kilometres to measure wavelength allows scientists and engineers to understand and design systems for global communication and natural signal monitoring. Although challenging to generate and detect, kilometre-scale wavelengths play a vital role in specialized but critical applications.
No conversions available for frequency-wavelength.